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Abstract—In real-world applications, it is often that the collect-
ed multi-view data are incomplete, i.e., some views of samples
are absent. Existing clustering methods for incomplete multi-
view data all focus on obtaining a common representation or
graph from the available views but neglect the hidden information
of missing views and information imbalance of different views.
To solve these problems, a novel method, called adaptive graph
completion based incomplete multi-view clustering (AGC IMC),
is proposed in this paper. Specifically, AGC IMC develops a
joint framework for graph completion and consensus represen-
tation learning, which mainly contains three components, i.e.,
within-view preservation, between-view inferring, and consensus
representation learning. To reduce the negative influence of
information imbalance, AGC IMC introduces some adaptive
weights to balance the importance of different views during the
consensus representation learning. Importantly, AGC IMC has
the potential to recover the similarity graphs of all views with the
optimal cluster structure, which encourages it to obtain a more
discriminative consensus representation. Experimental results
on five well-known datasets show that AGC IMC significantly
outperforms the state-of-the-art methods.

Index Terms—Incomplete multi-view clustering, common rep-
resentation, graph completion, similarity graph.

I. INTRODUCTION

AS a machine learning paradigm, multi-view clustering
(MVC) has received a lot of attention from researchers

and engineers in recent years [1-4]. MVC aims to partition
the given subjects into different groups in an unsupervised
way by combining feature information from multiple views
collected from different domains. Since features collected from
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different views contain much complementary information,
multi-view learning methods has the potential to achieve a
better performance than the single-view based methods using
either one of these views [3, 5-10]. In past years, many
MVC methods have been proposed, where some representative
works are summarized in [11]. In [12], a bipartite matching
constrained based clustering method is proposed for multi-
view video summarization. Chen et al. proposed a joint graph
learning framework to learn a consensus graph from the tensor
space for multi-view data clustering [13]. For these MVC
methods, a common assumption is that all views of samples
exist. In other words, these methods can only cluster the data
with complete views while failing to handle the data with
missing views. In our work, we refer to the data whose all
views of samples are fully observed as complete multi-view
data and refer to the data with missing views as incomplete
multi-view data.

In practical applications, owing to some uncontrollable
factors, the collected multi-view data are usually incomplete
[14-17]. For example, in visual-audio based speaker grouping
task, some speakers may only have either audio or visual
information [18]. Owing to the view missing, some problems
occur in the multi-view learning. First, it is difficult to explore
the complementary information of these incomplete multiple
views. Second, the balanced information of multiple views is
seriously broken since these views may have different numbers
of instances and features. The above problems make the view
missing challenging in MVC tasks. For convenience, we refer
to the clustering problem with missing views as incomplete
multi-view clustering (IMC).

To the best of our knowledge, the first method to handle
the IMC problem is proposed by Trivedi et al. in 2010 [19].
This method exploits the kernel canonical correlation analysis
(KCCA) to recover the kernel matrix with respect to the
missing view and then extract the features for clustering.
However, this method is inflexible since it can only handle the
two-view data and requires the data to have one complete view
[20]. In recent years, researchers proposed some advanced
IMC methods. For example, Li et al. proposed non-negative
matrix factorization based partial multi-view clustering (P-
MVC), which decomposes two views from the same sample
into the same latent representation [18]. On the base of PMVC,
Zhao et al. proposed the incomplete multi-modality grouping
(IMG) method which further introduced an adaptive manifold
constraint to learn a common graph for spectral clustering
[21]. Compared with the KCCA based method in [19], PMVC
and IMG are more flexible since they do not have the strict
requirement of one complete view. However, these methods
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are inapplicable to the data whose incomplete samples have
more than one view [22]. To improve the flexibility, some
weighted matrix factorization based IMC methods have been
proposed, where the most representative works are multi-
incomplete-view clustering (MIC) [23], online multi-view
clustering (OMVC) [24], doubly aligned incomplete multi-
view clustering (DAIMC) [25], and one-pass incomplete multi-
view clustering (OPIMC) [26], etc. These methods common-
ly introduce the view present and absent information as a
weighted matrix to regularize the matrix factorization models
of all views jointly. Compared with PMVC and IMG, these
weighted matrix factorization based methods are more superior
since they can handle all kinds of incomplete multi-view data.
In recent years, many graph based methods have also been
proposed for the difficult IMC tasks [27-29]. For instance,
Wen et al. proposed a low-rank representation based graph
and consensus representation joint learning framework [27].
Wang et al. proposed a perturbation-oriented IMC method,
which produced the consensus representation from the fixed
similarity graphs pre-constructed from data [28]. Recently,
deep learning has made impressive achievements in many
applications [30-34]. Owing to its superiority in the high-
level representation learning, many deep learning based IMC
methods have been proposed, such as Adversarial IMC [35]
and PMVC via consistent generative adversarial networks
(GANs) [36]. However, the two methods are only applicable
to the case with large amounts of paired-samples.

From the learning models of the existing IMC methods,
we can observe that learning a consensus representation or
graph shared by all views is one of the most promising
approaches for IMC. However, the existing methods suffer
from the following two issues: 1) The information of missing
views are ignored. 2) The information imbalance factor hiding
in these incomplete views is not considered since they treat
all views equally. As a result, these methods cannot obtain
the optimal common representation or graph, which limits
their performance. In this paper, we propose a novel graph
completion based IMC method to solve the above problems.
Specifically, the proposed method seeks to recover the graphs
of all incomplete views by fully exploring the within-view
information of every view and the between-view information
borrowed from the other views. In this way, the hidden
connections of the missing instances and available instances
can be recovered and in turn used to enhance the common
representation learning. To guarantee the global optima of the
latent representation and graphs of all views, we integrate the
graph completion and common representation learning into a
joint optimization framework. Moreover, considering different
views carry different degrees of discriminant information, we
impose a scale penalty vector on the learning models of all
views to balance the effectiveness of these views. Experimental
results show that the proposed method can improve the clus-
tering performance significantly in comparison with the state-
of-the-art IMC methods. Compared with the existing works,
our work has the following superior properties:

1) A novel graph completion based method is proposed to
address the IMC problem. To the best of our knowledge, it
is of the first work that handles the incomplete multi-view

clustering problem from the aspect of incomplete multi-graph
recovery. By recovering the graphs, the proposed method has
the potential to exploit the hidden information of missing
instances and available instances to enhance the consensus
representation learning.

2) The proposed method integrates the graph recovering
and common representation learning into a joint optimization
framework, which is beneficial to obtain the optimal graphs
with exact cluster structure and the optimal discriminative
latent representation, such that a better clustering performance
can be obtained.

3) The proposed method imposes an adaptive scale vector on
the learning models of all views, which can effectively reduce
the negative influence of information imbalance of multiple
views caused by view missing.

We organize the remainder of the paper as follows: In
Section II, the spectral clustering and multi-view spectral
clustering are briefly introduced as two related works to
the proposed method. In Section III, we first describe the
learning model, optimization process, and then discuss the
computational complexity of the proposed method. Several
experiments are conducted in Section VI. Section V offers
a brief conclusion to the paper.

II. RELATED WORKS

A. Spectral clustering

In view of the fact that spectral clustering mainly extracts a
graph that reveals the intrinsic relationships of samples for
clustering, it can be viewed as the graph based clustering
method [37]. For a dataset X = [x1, x2, . . . , xn] ∈ Rm×n,
spectral clustering generally first constructs a similarity graph
W ∈ Rn×n with non-negative elements and symmetric struc-
ture from the data, where m and n represent the feature di-
mension and number of samples, respectively. In the similarity
graph, each element can be regarded as the probability of the
corresponding two samples come from the same class to some
extent. Then it minimizes the following objective function to
obtain the new representation of all samples:

min
U

Tr
(
UTLU

)
s.t. UTU = I (1)

where U ∈ Rn×c is the new representation (each row vector
of U is the new representation of the corresponding sample).
c is the feature dimension of the new representation, which is
generally chosen as the cluster number of the data. I denotes
an identity matrix. L ∈ Rn×n is the Laplacian matrix of graph
W , which is calculated as L = D − W in ratio cut [38]
and L = I − D−1/2WD−1/2 in normalized cut [39], where
D ∈ Rn×n is a diagonal matrix whose ith diagonal element
is computed as the sum of the ith row vector of graph W .

B. Multi-view spectral clustering

Spectral clustering based MVC method, referred to as multi-
view spectral clustering, is one of the most representative
methods in fields of multi-view clustering. Generally, multi-
view spectral clustering seeks to learn a consensus represen-
tation from multiple similarity graphs constructed from all
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views, followed by implementing k-means on the consensus
representation to achieve the final clustering results [5, 40].
As one of the well-known methods, co-regularized multi-view
spectral clustering designs the following model to learn the
consensus representation agreed by all views [41]:

max
U(v),U∗

l∑
v=1

(
Tr
(
U (v)TL(v)U (v)

)
+ λvTr

(
U (v)U (v)TU∗U∗T

))
s.t. U (v)TU (v) = I, U∗TU∗ = I

(2)
where λv denotes the penalty parameter of the vth view. L(v)

is the normalized graph of the vth view and is calculated
as L(v) =

(
D(v)

)−1/2
W (v)

(
D(v)

)−1/2
, D(v) is a diagonal

matrix and calculated as D(v)
i,i =

n∑
j=1

W
(v)
i,j for the ith diagonal

element, W (v) ∈ Rn×n is the pre-constructed similarity graph
with symmetrical structure of the vth view, n denotes the
number of samples. U (v) ∈ Rn×d can be viewed as the
new representation of data in the vth view, d is the feature
dimension of new representation. U∗ ∈ Rn×d denotes the
consensus representation shared by all views.

III. THE PROPOSED METHOD

As presented in the previous section, multi-view spectral
clustering constructs some graphs from all views for consensus
representation learning. It strictly requires that all constructed
graphs are complete. In other words, all graphs constructed
from the multi-view data with n instances should have the
same dimension of n × n. However, for the incomplete
multi-view data, it is obviously impossible to construct such
complete graphs, which results in the failure of the traditional
multi-view spectral clustering methods. Therefore, if we can
complete the graphs, the issue that perplexes the IMC can
be naturally solved. Inspired by this motivation, we propose
a novel IMC method based on the graph completion in this
section. The framework of the proposed method is shown in
Fig.1. The proposed method focuses on recovering the in-
complete graphs and calculating the consensus representation
simultaneously in a joint framework.

A. Learning model of the proposed method

For any incomplete multi-view data with l views and n
samples, let Y (v) ∈ Rmv×nv be the set of available instances
from the vth view, where mv and nv (nv ≤ n) are the
feature dimension and number of available instances of the
vth view. S̄(v) ∈ Rnv×nv denotes the symmetric graph pre-
constructed from the available instances of the vth view,
where all elements of S̄(v) are non-negative. Due to the view
missing, every graph S̄(v) is incomplete, which cannot reveal
the comprehensive relationships of all samples. Our goal is
to complete these flawed graphs such that the complementary
information of different views can be better explored for the
consensus representation learning. The learning model of our
proposed method is mainly composed of three components:
within-view preservation, between-view inferring, and consen-
sus representation learning.

Within-view preservation: Let S(v) ∈ Rn×n be the re-
ferred (completed) graph of the vth view. Understandably,

for the vth view, the similarity information of the available
instances in S̄(v) should be preserved in the referred graph
S(v). To this end, the following within-view preservation
model is designed:

min
S(v)

l∑
v=1

∥∥∥(S(v)
)
A
− S̄(v)

∥∥∥2
F

(3)

where
(
S(v)

)
A
∈ Rnv×nv denotes the subgraph of S(v) whose

every element represents the similarity information of the
corresponding two available instances as that in S̄(v).

We assume that matrix E ∈ Rl×n records the index
information of the missing views, where Ei,j = 0 means that
the jth instance is missing in the ith view, otherwise Ei,j = 1.
Based on the view-missing information recorded in E, we can
transform (3) into the following equivalent formula:

min
S(v)

l∑
v=1

∥∥∥(S(v) − S̃(v)
)
�
(
ETv,:Ev,:

)∥∥∥2
F

(4)

where Ev,: represents the vth row vector of matrix E, �
denotes the element-wise based multiplication operation. If we
define W (v) = ETv,:Ev,:, then W

(v)
i,j = 1 means that the ith

sample and the jth sample all have the instances of the vth
view, otherwise W (v)

i,j = 0. S̃(v) ∈ Rn×n is an extended graph
filled by graph S̄(v), where the elements in S̃(v) related to the
missing instances are set as 0. Mathematically, S̄(v) and S̃(v)

have the following connections:

S̃(v) = G(v)S̄(v)G(v)T (5)

where G(v) ∈ Rn×nv is defined as follows according to the
view-missing information:

G
(v)
i,j =

{
1, if y

(v)
j is the vth view of the ith sample

0, otherwise
(6)

where y(v)j is the jth instance of the available instance set Y (v)

from the vth view.
Between-view inferring: For the incomplete data, due to

the lack of similarity information of the missing instances
and available instances, it is obvious impossible to obtain
the complete graphs by only exploring the within-view in-
formation. Fortunately, the multi-view data contains many
complementary information among views. Moreover, there
must be some connected relationships between the sample
and the other samples in at least one view for the incomplete
multi-view data. This demonstrates that it is possible to infer
the missing rows and columns corresponding to the missing
views in graphs by borrowing the similarity information from
the other views [42]. Inspired by this motivation, we design the
following sparse representation based between-view inferring
model for recovering the incomplete graphs:

min
S(v),B

l∑
v=1

∥∥∥∥∥S(v) −
l∑

i=1,i6=v
S(i)Bi,v

∥∥∥∥∥
2

F

s.t. 0 ≤ S(v) ≤ 1, S(v)T 1 = 1, S(v)
i,i = 0,

0 ≤ Bi,v ≤ 1,
l∑

i=1,i6=v
Bi,v = 1, Bv,v = 0

(7)
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Fig. 1. The framework of the proposed method. Our method simultaneously predicts the missing graph rows/columns and learns the consensus representation
by exploring the between-view information and within-view information of multiple views.

where B ∈ Rl×l can be viewed as the linear regression (or
self-representation) matrix. 1 ∈ Rn×1 is a column vector with
all elements as one. S(v)

i,i = 0 and Bv,v = 0 represent that all
diagonal elements of matrix S(v) and B are zero. {0 ≤ Bi,v ≤

1,
l∑

i=1,i6=v
Bi,v = 1, Bv,v = 0} and {0 ≤ S(v) ≤ 1, S(v)T 1 =

1, S(v)
i,i = 0} are boundary constraints. Model (7) is able to

adaptively select the most reliable information of the other
views for graph completion such that more precise similarity
graphs can be achieved.

Consensus representation learning: When the graphs are
recovered, many conventional methods can be chosen to
learn the consensus representation [43-45]. For instance, co-
regularized multi-view spectral clustering indirectly learns a
consensus representation from the similarity graphs of all
views [41]. Robust auto-weighted multi-view clustering tries
to learn a consensus graph from all pre-constructed graphs
[45]. In our work, we adopt the following model to learn the
consensus representation shared by all views directly [44]:

min
U

l∑
v=1

Tr
(
UTLS(v)U

)
s.t. UTU = I (8)

where U ∈ Rn×c is the consensus representation, c is the man-
ual selected dimension which is generally chosen as the cluster
number. LS(v) is the Laplacian matrix of graph S(v). In our
method, since S(v) computed in our work is not a symmetric
matrix, LS(v) is computed as LS(v) = D(v)−

(
S(v) + S(v)

)/
2,

where D(v) is a diagonal matrix whose ith diagonal element

is computed as D(v)
i,i =

n∑
j=1

(
S
(v)
i,j + S

(v)
j,i

)/
2.

Overall objective function: Both of the within-view in-
formation and between-view information are important to the
restoration of the similarity graphs of all views. Therefore, we
combine the above two kinds of information for graph comple-
tion and consensus representation learning. Considering that
different views may contain different degrees of useful infor-
mation, the following adaptively weighted learning framework
is developed to integrate the above three components, i.e., (4),

(7), and (8):

min
S(v),U,B,α(v)

λ1

l∑
v=1

(α(v))
r

∥∥∥∥∥∥S(v) −
l∑

i=1,i6=v

S(i)Bi,v

∥∥∥∥∥∥
2

F︸ ︷︷ ︸
within−view preservation

+
l∑

v=1

(α(v))
r

∥∥∥(S(v) − S̃(v))�W (v)
∥∥∥2
F︸ ︷︷ ︸

between−view inferring

+λ2Tr
(
UTLS(v)U

)
s.t. 0 ≤ S(v) ≤ 1, S(v)T 1 = 1, S(v)

i,i = 0, UTU = I,

0 ≤ Bi,v ≤ 1,
l∑

i=1,i6=v
Bi,v = 1, Bv,v = 0,

l∑
v=1

α(v) = 1, 0 ≤ α(v) ≤ 1

(9)
where W (v) = ETv,:Ev,: is defined in (4). λ1 and λ2 are
the penalty parameters to balance the importance of the
corresponding constraints. α(v) is the weight to balance the
importance of the vth view in the joint learning model.
Smooth parameter r > 1 controls the distribution of weights
α(1), . . . , α(l).

Since learning model (9) adaptively recovers the incomplete
graphs to address the incomplete multi-view clustering prob-
lem, we refer to the proposed method as Adaptive Graph Com-
pletion based Incomplete Multi-view Clustering (AGC IMC).
From the objective function (9), we can discover the following
proposition.

Proposition 1: By optimization problem (9), the recovered
graphs S =

{
S(1), . . . , S(l)

}
of all views have the potential

to possess exactly c connected components.
Proof : Please refer to the supplementary material for the

detailed proof process of proposition 1.
As proved in many previous works, the optimal similarity

graph should have exactly c connected components for the
data with c clusters [46, 47]. Therefore, proposition 1 indicates
that the proposed method is able to recover the graph with the
optimal structure of every view, and thus has the potential to
obtain a better clustering performance.
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B. Solution to AGC IMC

It is difficult to obtain the analytical solution of problem (9)
since it has 3l + 1 variables to compute. In this section, we
provide an alternative iterative optimization approach to find
its local optimal solution [48-50]. Detailed optimization steps
are presented as follows:
S(v)-Step: Fixing the other variables, the optimization prob-

lem of (9) with respect to variable S(v) is degraded as:

min
0≤S(v)≤1,S(v)T 1=1,S(v)

i,i =0

λ1

l∑
v=1

(
α(v)

)r ∥∥∥∥∥S(v) −
l∑

i=1,i6=v
S(i)Bi,v

∥∥∥∥∥
2

F

+
(
α(v)

)r (∥∥∥(S(v) − S̃(v)
)
�W (v)

∥∥∥2
F
+ λ2Tr

(
UTLS(v)U

))
(10)

The first term of problem (10) can be transformed as:

l∑
v=1

(
α(v)

)r ∥∥∥∥∥∥S(v) −
l∑

i=1,i6=v

S(i)Bi,v

∥∥∥∥∥∥
2

F

=

l∑
i=1,i6=v

(
α(i)

)r ∥∥∥∥∥∥Bv,iS(v) −

S(i) −
l∑

j=1,j 6=v,j 6=i

S(j)Bj,i

∥∥∥∥∥∥
2

F

+
(
α(v)

)r ∥∥∥∥∥∥S(v) −
l∑

i=1,i6=v

S(i)Bi,v

∥∥∥∥∥∥
2

F
(11)

Defining N (i) = S(i) −
l∑

j=1,j 6=v,j 6=i
S(j)Bj,i, M (v) =

l∑
i=1,i6=v

S(i)Bi,v , Zi,j = ‖Ui,: − Uj,:‖22, and ψ
(
S(v)

)
={

0 ≤ S(v) ≤ 1, S(v)T 1 = 1, S(v)
i,i = 0

}
, problem (10) can be

simplified as follows:

min
ψ(S(v))

(α(v))r

(∥∥∥(S(v) − S̃(v)
)
�W (v)

∥∥∥2
F
+ λ2

2

n∑
i,j

Zi,jS
(v)
i,j

)
+

l∑
i=1,i6=v

(α(i))
r
(Bv,i)

2λ1

∥∥∥S(v) −N (i)
/
Bv,i

∥∥∥2
F

+ λ1

(
α(v)

)r ∥∥∥S(v) −M (v)
∥∥∥2
F

⇔ min
0≤S(v)≤1,S(v)T 1=1,S(v)

i,i =0

n∑
i,j=1

(
S

(v)
i,j − T

(v)
i,j

)2
(12)

where T
(v)
i,j =

P
(v)
i,j

(α(v))
r
W

(v)
i,j +

l∑
k=1,k 6=v

(α(k))
r
(Bv,k)

2λ1+λ1(α(v))
r

,

P
(v)
i,j =

l∑
k=1,k 6=v

(
α(k)

)r
Bv,kλ1N

(k)
i,j + λ1

(
α(v)

)r
M

(v)
i,j +(

α(v)
)r (

S̃
(v)
i,j W

(v)
i,j −

λ2

4 Zi,j

)
.

Problem (12) is independent with respect to all columns, and
thus we can optimize problem (12) column by column. The
optimal solution of (12) can be expressed as follows [27, 47]:

S
(v)
i,j =

{ (
T

(v)
i,j + ηi

)
+
, i 6= j

0, i = j
(13)

where function (A)+ = max (A, 0) ensures all elements of A
to be non-negative. According to the constraints S(v)T 1 = 1

and S
(v)
i,i = 0, we can obtain the optimal solution of ηj as

follows:

ηj =

1−
n∑

i=1,i6=j

T
(v)
i,j

/(n− 1) (14)

U -Step: Fixing variables {S(v), B, α(v)} in problem (9), the
sub-optimization problem with respect to variable U can be
expressed as:

min
UTU=I

l∑
v=1

(
α(v)

)r (
Tr
(
UTLS(v)U

))
(15)

Problem (15) is a typical eigenvalue decomposition prob-
lem. Suppose u1, u2, . . . , uc are the eigenvectors corre-
sponding to the first c minimum eigenvalues of matrix
l∑

v=1

(
α(v)

)r
LS(v) , the optimal solution to problem (15) is

expressed as U = [u1, u2, . . . , uc] ∈ Rn×c.
B-Step: From (9), the optimization problem with respect to

variable B can be expressed as follows:

min

0≤Bi,v≤1,
l∑

i=1,i6=v

Bi,v=1,Bv,v=0

l∑
v=1

∥∥∥∥∥∥S(v) −
l∑

i=1,i6=v

S(i)Bi,v

∥∥∥∥∥∥
2

F

(16)
Let G ∈ Rn2×l be a matrix formed by

{
S(v)

}l
v=1

, whose
vth column is the vector stacked by all columns of matrix S(v),
then (16) can be transformed into the following problem:

min

0≤Bi,v≤1,
l∑

i=1,i6=v

Bi,v=1,Bv,v=0

l∑
v=1

‖G:,v −GB:,v‖22 (17)

Obviously, problem (17) can be transformed into l indepen-
dent optimization sub-problems. Therefore, we can calculate
the vth column of matrix B by solving the following problem:

min

0≤Bi,v≤1,
l∑

i=1,i6=v

Bi,v=1,Bv,v=0

‖G:,v −GB:,v‖22 (18)

Problem (18) is a typical simplex representation based
optimization problem and can be fast solved via the accelerat-
ed projected gradient method [51]. For detailed optimization
process of problem (18), please refer to [51].
α(v)-Step: Fixing variables {S(v), B, U} and

defining d(v) =
∥∥∥(S(v) − S̃(v)

)
�W (v)

∥∥∥2
F

+

λ1

∥∥∥∥∥S(v) −
l∑

i=1,i6=v
S(i)Bi,v

∥∥∥∥∥
2

F

+ λ2Tr
(
UTLS(v)U

)
, problem

(9) can be degraded into the following minimization problem
with respect to variable α(v):

min
α(v)

l∑
v=1

(
α(v)

)r
d(v)

s.t.
l∑

v=1
α(v) = 1, 0 ≤ α(v) ≤ 1

(19)
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The Lagrange function of problem (19) is formulated as
follows [3]:

Ψ
(
α(v), β

)
=

l∑
v=1

(
α(v)

)r
d(v) − β

(
l∑

v=1

α(v) − 1

)
(20)

where β is the Lagrange multiplier. The partial derivative of
Ψ with respect to variable α(v) is:

∂Ψ

∂α(v)
= r
(
α(v)

)r−1
d(v) − β (21)

Let ∂Ψ
/
∂α(v) = 0, we have:

α(v) =
(
β
/(

rd(v)
))1/(r−1)

(22)

According to the constraint
l∑

v=1
α(v) = 1, we can obtain

the optimal solution of α(v) as follows:

α(v) =

(
d(v)

/
l∑

v=1

d(v)

)1/(1−r)

(23)

The above optimization processes are summarized in Algo-
rithm 1, where the convergence condition is set as |Obj(t)−
Obj(t − 1)| < 10−6 and the maximum iteration is set as 50.
t denotes the iteration step and the objective function value
Obj is calculated as:

Obj =

l∑
v=1

(
α(v)

)r

∥∥∥(S(v) − S̃(v)

)
�W (v)

∥∥∥2
F

+λ1

∥∥∥∥∥S(v) −
l∑

i=1,i6=v
S(i)Bi,v

∥∥∥∥∥
2

F
+λ2Tr

(
UTLS(v)U

)

.

Algorithm 1 : AGC IMC (solving (9))

Input: Multi-view data
{
X(v)

}l
v=1

, index matrix E ∈
Rl×n, parameters λ1, λ2, and r.
Initialization: Construct the similarity graph

{
S̄(v)

}l
v=1

from every view, then exploit it to achieve graph
{
S̃(v)

}l
v=1

based on the view missing information. U ∈ Rn×c is an
orthogonal matrix initialized by (15). α(v) = 1/l.
while not converged do

1. Update variable
{
S(v)

}l
v=1

via (13);
2. Update variable U by solving (15);
3. Update variable B by solving (18);
4. Update variable

{
α(v)

}l
v=1

via (23);
end while
Output: U

C. Computational complexity analysis

In the previous section, we have provided an alternating
iterative optimization approach to solve objective problem (9).
For the first step, i.e., S(v)-step, we can find that this step only
contains some element-wise based operations, and thus the
computational cost of this step can be ignored. The second step
computes the representation U , where the most computational
cost is consumed by the eigenvalue decomposition. Generally,

the computational complexity of the eigenvalue decomposition
on an n× n matrix is about O

(
n3
)
. Fortunately, for problem

(15), we only need to obtain c eigenvectors corresponding to

the first c minimum eigenvalues of matrix
l∑

v=1

(
α(v)

)r
LS(v)

rather than calculating its all eigenvalues and eigenvectors.
Therefore, we can adopt a more efficient function ‘eigs’ [52]
to speed up the computational efficiency, which only costs
O
(
cn2
)
. Hence, the computational complexity of the second

step is about O
(
cn2
)
. For the third step, i.e., B-step, an effi-

cient projected gradient algorithm proposed in [51] is adopted
to solve the optimization sub-problem (18). As presented in
[51], the projected gradient algorithm also contains only the
element-wise based vector addition and subtraction operations.
So we can also ignore the computational cost of this step.
For the last step, i.e., α(v)-step, it is obvious that the optimal
solution of the corresponding problem (19) can be simply
computed via the numerical division operation. Therefore,
the computational complexity of the fourth step can be also
ignored. Based on the above analysis, the computational com-
plexity of the exploited optimization approach in Algorithm 1
is about O

(
τcn2

)
, where τ denotes the iteration number.

IV. EXPERIMENTS AND ANALYSES

In this section, we aim to verify the effectiveness of the pro-
posed AGC IMC through the comparison with state-of-the-art
IMC methods. Moreover, we also conduct several experiments
to analyze the parameter sensitivity and convergence property
of AGC IMC. For the proposed method, we simply initialize
the similarity graph

{
S̄(v)

}l
v=1

as k-nearest-neighbor (KNN)
graph for every view. The code of our AGC IMC is released
at: https://sites.google.com/view/jerry-wen-hit/publications.

A. Dataset description and incomplete multi-view data con-
struction

Five multi-view datasets listed in Table I are chosen to
validate the proposed method:

(i) BBCSport [53]: BBCSport is a document dataset which
comprises of 737 news articles related to five sports (i.e., ath-
letics, cricket, football, rugby and tennis) from the BBC Sport
website in 2004-2005. Following the experimental settings in
[27], we adopt a subset1 with four views of BBC sport multi-
view datasets to evaluate different IMC methods. The subset
includes 116 samples and the feature dimensions of different
views are 1991, 2063, 2113, and 2158, respectively [54].

(ii) 3Sources2: 3Sources is a well-known multi-view text
dataset. It collects 416 distinct news stories covering six top-
ical areas from three online news sources, i.e., BBC, Reuters,
and The Guardian, from the period of February-April, 2009,
where 169 stories are simultaneously reported in the above
three news sources. Article from each news source can be
regarded as one view for the story. In our experiments, the
subset with 169 stories reported in all three views is chosen
to evaluate different IMC methods.

1https://github.com/GPMVCDummy/GPMVC/tree/master/partialMV/PVC/
recreateResults/data.

2http://erdos.ucd.ie/datasets/3sources.html.
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TABLE I
DESCRIPTION OF THE MULTI-VIEW DATASETS.

Dataset # Class # View # Samples # Features
BBCSport 5 4 116 1991/2063/2113/2158
3Sources 6 3 169 3560/3631/3068

Handwritten 10 6 2000 240/76/216/47/64/6
Caltech20 20 6 2386 48/40/254/1984/512/928

Animal 50 2 10158 4096/4096

(iii) Handwritten3 [55]: This dataset contains 10 digits, i.e.,
0-9, where each digit has 200 handwritten images. Six kinds
of features, i.e., pixel averages, Fourier coefficients, profile
correlations, Zernike moment, Karhunen-love coefficient, and
morphological, are extracted from every sample as six views,
where the feature dimensions are 240, 76, 216, 47, 64, and 6,
respectively.

(iv) Caltech-101 [56]: The original Caltech-101 dataset
contains 101 objects and each object has about 40-800 images.
In our experiments, a subset, referred to as Caltech20 which
contains 20 objects and 2386 samples is adopted [55]. Follow-
ing [55], six kinds of features, i.e., Gabor, wavelet moments,
CENTRIST, HOG, GIST, and LBP, are extracted from all
images as six views. The feature dimensions of the above
views for each instance are 48, 40, 254, 1984, 512, and 928,
respectively.

(v) Animal [56]: The multi-view Animal dataset released by
Zhang et al. [57] is chosen to evaluate the proposed method.
There are 10158 images provided by 50 classes in the dataset,
where each image is represented by two kinds of features
extracted by DECAF [58] and VGG19 [32], respectively.

For the BBCSport and 3Sources datasets, under the con-
dition that each sample contains at least one instance, we
randomly remove 10%, 30%, and 50% instances from every
view to construct the incomplete multi-view dataset with
different missing-view rates. Similarly, for Handwritten and
Caltech20 datasets, 30%, 50%, and 70% instances are random-
ly removed from every view to construct the incomplete multi-
view datasets. For the Animal dataset, p% (p = {30, 50, 70})
samples are randomly selected as the paired-samples whose
views are fully observed. Then we randomly remove the first
view for half of the remaining samples and remove the second
view for the other half of samples. In this way, the incomplete
Animal dataset with p% paired-samples is constructed.

B. Compared methods and evaluation metric

The following methods that can handle the incomplete
multi-view cases are selected as baselines:

(i) Best single view (BSV) [21]: BSV implements k-means
on all views separately, and then reports the best clustering
result of these views. For BSV, all missing instances are filled
in the average instance of every view.

(ii) Concat [21]: Concat stacks multiple views into a single
view by integrating features of all views into a long feature
vector, then implements the k-means on the stacked single
view and reports the clustering result. For Concat, the missing
instances of every view are also filled in the average of
available instances in the corresponding view as BSV.

3https://archive.ics.uci.edu/ml/datasets/Multiple+Features.

(iii) Graph regularized partial multi-view clustering (GP-
MVC) [54]: By integrating the instance-missing information
into the multi-view matrix factorization model, GPMVC ob-
tains a common representation shared by all views indirectly
from the representations derived from different views. Spe-
cially, GPMVC introduces the graph constraint to exploit the
local geometric structure of data for representation learning.

(iv) MIC [23]: MIC designs a weighted multi-view matrix
factorization framework to learn the consensus representation
for all views, where the instance-missing information are
constrained as the weight to avoid the negative influence of
missing views.

(v) DAIMC [25]: DAIMC learns a consensus representation
for all views by adopting two main techniques, i.e., instance
information alignment based weighted matrix factorization and
basis matrices alignment based sparse regression.

(vi) OMVC [24]: Similar to MIC, OMVC also designs
a weighted non-negative matrix factorization framework to
learn the consensus representation for all incomplete views.
As an extension of MIC, it provides a chunk by chunk training
approach to improve the efficiency on large-scale datasets.

(vii) OPIMC [26]: OPIMC tries to learn a consensus repre-
sentation with binary elements (0 and 1) via the weighted joint
matrix factorization model. It also provides an one-pass based
chunk by chunk training approach to improve the clustering
efficiency.

In our experiment, we adopt seven well-known indicators,
i.e., accuracy (Acc), normalized mutual information (NMI),
purity, adjusted Rand index (AR), F-score, precision, and recall
as the evaluation metrics to compare these IMC methods [59-
61]. For the above seven metrics, a higher value means relative
better clustering performance. For fairly comparing, we run
the above methods several times with respect to different view
missing groups, and then collect their average values (%). In
addition, all compared methods are implemented with a wide
parameter ranges and their best performances are reported.

C. Experimental results and analysis

Table II-Table III, and Fig. 2-Fig. 6 show the experimental
results of different IMC methods on the five multi-view
datasets with different missing-view or paired-sample rates.
The comparison of the clustering results of different methods
in these figures and tables reflects the following points:

1) Obviously, the proposed method outperforms all the other
methods on the five multi-view datasets in terms of all the
seven clustering evaluation metrics. For instance, from Table
II, on the BBCsport dataset, the proposed method obtains
about 13% improvement of Acc in comparison with the second
best method. The experimental results listed in Table III
show that on the Caltech20 dataset, the NMI obtained by the
proposed method is about 4 percent higher than that of the
second best method.

2) DAIMC and the proposed method perform better than
the other methods on the five datasets in most cases. Among
these methods, the proposed method and DAIMC commonly
focus on exploiting more information from data to guide the
consensus representation learning. In particular, DAIMC tries
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TABLE II
ACCS (%), NMIS (%), PURITIES (%) OF DIFFERENT IMC METHODS ON THE BBCSPORT AND 3SOURCE DATASETS WITH DIFFERENT MISSING RATES OF

VIEWS. BOLD NUMBERS DENOTE THE BEST RESULT.

Acc (%) NMI (%) Purity (%)
Dataset Method\Rate 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

BBCSport

BSV 58.62±3.94 51.31±5.33 44.03±3.78 43.73±7.43 31.03±2.08 21.40±2.61 65.79±5.52 55.07±1.51 47.59±2.28
Concat 70.62±3.76 58.72±5.42 33.21±2.19 61.69±6.72 38.92±7.87 18.61±1.44 80.59±4.59 63.24±5.82 37.00±1.54
GPMVC 51.44±8.20 46.89±5.01 43.91±6.31 28.23±10.31 20.04±7.39 15.48±4.54 58.39±8.58 52.76±5.60 45.29±5.41
MIC 51.21±4.21 46.21±4.71 46.03±5.19 29.90±6.25 25.84±3.24 24.01±5.39 55.00±4.15 51.72±4.27 52.41±6.23
DAIMC 68.62±4.59 63.45±10.97 56.89±5.59 56.62±4.60 50.17±9.91 37.89±6.22 76.90±5.89 71.72±10.76 61.03±5.08
OMVC 53.33±3.21 51.38±3.06 48.79±3.10 30.64±2.00 41.57±2.79 40.63±2.45 56.49±2.81 59.20±2.12 57.47±2.80
OPIMC 54.14±4.78 52.93±4.93 45.69±6.00 35.66±4.71 31.56±6.10 21.75±6.44 58.28±4.82 56.72±5.76 50.86±6.87
Ours 83.10±5.74 80.17±3.19 70.86±6.14 73.19±4.73 67.79±4.88 52.41±5.92 86.03±2.08 83.79±3.83 76.03±4.54

3Sources

BSV 56.90±3.69 47.38±3.07 39.24±3.08 50.07±1.22 34.46±4.07 22.34±1.91 68.14±1.67 57.63±1.32 48.99±0.63
Concat 53.54±3.00 46.79±3.99 37.68±2.91 51.98±1.37 37.87±3.66 18.32±3.25 69.78±1.09 58.51±3.18 46.48±2.82
GPMVC 48.24±6.73 44.50±9.65 42.01±9.97 34.82±9.55 30.44±10.63 28.15±6.09 60.47±5.32 58.58±7.13 57.40±4.64
MIC 49.11±3.60 47.69±7.61 42.49±8.63 37.23±6.13 38.62±3.81 26.08±7.42 57.28±3.36 61.30±4.28 52.31±4.96
DAIMC 56.33±4.23 52.43±6.63 50.73±3.87 52.98±3.65 49.07±5.78 41.64±2.43 68.99±4.26 67.21±4.89 63.56±3.38
OMVC 43.95±7.35 41.11±4.31 39.53±3.63 36.48±10.77 28.42±3.41 24.34±1.50 59.37±8.26 48.76±5.44 45.44±3.10
OPIMC 55.73±2.85 54.20±4.48 43.08±6.98 40.62±2.28 38.83±3.86 22.69±3.83 64.73±1.70 64.26±2.03 53.61±4.36
Ours 77.63±0.87 71.60±5.48 68.16±4.09 68.84±1.71 61.53±3.84 51.59±3.92 83.33±0.49 77.87±3.68 73.73±1.85

TABLE III
ACCS (%), NMIS (%), PURITIES (%) OF DIFFERENT IMC METHODS ON THE HANDWRITTEN, CALTECH20, AND ANIMAL DATASETS WITH DIFFERENT

MISSING RATES OF VIEWS. BOLD NUMBERS DENOTE THE BEST RESULT.

Acc (%) NMI (%) Purity (%)
Dataset Method\Rate 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

Handwritten

BSV 60.80±9.94 41.18±5.05 26.57±2.31 51.44±8.47 35.06±5.22 19.93±2.62 57.76±8.91 42.11±4.71 27.81±2.26
Concat 61.40±1.10 45.25±0.94 30.85±0.67 55.52±0.92 39.83±1.04 25.13±0.68 61.72±0.76 45.92±0.93 31.74±0.59
GPMVC 47.03±2.92 34.39±4.82 25.70±1.43 38.59±4.92 26.06±3.39 15.84±1.39 48.55±5.69 35.40±3.21 27.22±2.28
MIC 53.34±5.99 41.01±2.19 24.87±2.07 48.37±3.89 33.66±3.11 16.64±1.71 55.10±3.84 41.86±2.39 25.90±1.87
DAIMC 82.79±2.25 78.39±1.11 55.89±5.37 71.80±2.84 64.05±1.89 41.03±3.08 82.79±2.25 78.39±1.11 56.03±5.27
OMVC 54.53±3.72 39.46±4.97 31.32±2.06 45.51±1.66 30.45±4.03 22.08±2.35 55.23±3.50 40.97±.80 33.34±2.40
OPIMC 76.22±3.82 72.25±7.18 63.53±8.06 72.67±1.70 66.61±4.77 55.03±4.32 78.08±2.80 74.02±6.61 65.79±6.89
Ours 85.73±1.93 83.88±1.63 82.25±4.03 85.64±0.80 82.91±2.09 73.14±2.53 86.75±0.56 84.82±1.52 82.64±3.46

Caltech20

BSV 34.66±1.34 34.69±1.18 34.42±1.02 43.99±1.09 32.60±0.95 19.82±0.43 62.43±0.85 54.22±0.95 46.29±0.58
Concat 38.89±0.97 29.46±0.66 23.72±0.59 45.57±0.85 36.28±0.67 26.51±0.83 68.37±0.69 60.36±0.45 52.06±0.59
GPMVC 33.89±1.77 25.69±1.85 19.98±2.14 38.58±1.11 31.14±1.67 23.28±1.88 61.21±2.21 57.35±1.86 51.33±1.44
MIC 35.37±2.32 28.15±2.09 24.08±0.96 44.41±0.70 36.07±1.14 26.68±0.74 69.08±0.62 61.81±0.93 52.24±1.38
DAIMC 47.44±1.28 44.77±2.28 37.01±1.63 54.20±0.56 50.39±1.55 36.24±0.94 72.04±0.88 70.93±1.10 63.56±1.48
OMVC 35.20±3.92 34.59±1.07 38.09±2.76 35.86±1.50 35.00±0.94 39.59±1.27 62.75±1.76 49.57±4.30 48.90±2.28
OPIMC 56.05±7.50 53.13±4.21 38.59±6.79 36.42±4.37 32.00±3.52 21.88±4.36 60.11±2.93 57.53±1.81 51.28±3.05
Ours 59.74±1.50 56.97±1.15 48.73±2.41 58.28±0.79 54.20±1.45 45.69±1.32 74.55±0.84 72.48±1.25 66.77±0.60

Animal

BSV 42.05±1.20 48.63±1.89 56.22±1.20 48.16±0.44 55.91±0.58 63.99±0.38 45.20±0.88 52.26±1.19 60.31±0.78
Concat 42.79±0.67 49.34±1.39 53.99±0.99 55.46±0.16 59.31±0.38 63.88±0.35 48.12±0.45 53.24±0.88 59.26±0.81
GPMVC 43.10±1.79 49.24±1.42 54.77±1.24 47.02±0.57 52.23±0.53 58.48±0.17 46.78±1.24 52.77±0.81 59.31±0.74
MIC 43.38±0.63 45.88±0.34 49.15±0.88 52.79±0.77 55.69±0.36 59.30±0.54 49.21±0.78 52.31±0.34 55.33±0.64
DAIMC 50.18±2.18 53.87±1.36 56.42±1.37 55.03±1.03 59.36±1.16 62.76±0.46 54.82±1.57 59.51±1.65 62.12±1.04
OMVC 42.51±0.89 43.98±0.77 46.39±1.02 50.77±0.63 53.11±0.83 55.38±0.46 47.33±0.66 50.42±0.91 52.97±0.76
OPIMC 46.33±2.14 53.14±1.38 53.88±1.26 52.34±0.69 58.51±0.46 62.04±0.26 49.49±1.41 56.23±1.20 57.91±0.43
Ours 57.19±0.89 60.11±2.01 62.59±1.72 63.97±0.58 66.66±0.74 68.26±1.06 63.66±0.52 66.39±0.93 67.70±0.77
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Fig. 2. Experimental results with respect to (a) AR (%), (b) F-score (%), (c) precision (%), and (d) Recall (%) of different IMC methods on the BBCSport
dataset with different missing rates of views.
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Fig. 3. Experimental results with respect to (a) AR (%), (b) F-score (%), (c) precision (%), and (d) Recall (%) of different IMC methods on the 3Sources
dataset with different missing rates of views.
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Fig. 4. Experimental results with respect to (a) AR (%), (b) F-score (%), (c) precision (%), and (d) Recall (%) of different IMC methods on the Handwritten
dataset with different missing rates of views.
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Fig. 5. Experimental results with respect to (a) AR (%), (b) F-score (%), (c) precision (%), and (d) Recall (%) of different IMC methods on the Caltech20
dataset with different missing rates of views.
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Fig. 6. Experimental results with respect to (a) AR (%), (b) F-score (%), (c) precision (%), and (d) Recall (%) of different IMC methods on the Animal
dataset with different rates of paired-samples.

to explore more complementary information of multiple views
by introducing a novel alignment constraint. The proposed
method tries to recover yet exploit the similarity information of
the missing instances and available instances for the consensus
representation learning. However, the other methods, such
as MIC, OMVC and OPIMC, only capture the consistency
information shared by all views via the simple weighted
matrix factorization technique. Therefore, the experimental
results demonstrate the effectiveness of capturing more com-
plementary and consistency information of data in multi-view
clustering cases.

3) From the experimental results shown in these tables
and figures, it can be observed that when the missing rate
of views increases, the clustering performance of all meth-
ods in terms of all evaluation metrics commonly decreases.
This phenomenon illustrates that it is difficult to learn the
reasonable consensus representation shared by all views from
the multi-view data with a high missing-view rate. This is
mainly because that under the case of large missing rate,
the multi-view data losses much consistence information and
complementary information which are harmful to the MVC.

In Fig. 7, the weight α obtained by the proposed method
on the Handwritten dataset with different missing-view rates
are plotted. It is obvious that different views are set with
different weight values adaptively. This demonstrates that the

proposed method can sufficiently consider the full information
of multi-views and effectively reduce the negative influence of
information imbalance problem.
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Fig. 7. Weight α with respect to different views of the proposed method on
the Handwritten dataset with different missing-view rates.

D. Sensitivity analysis of the penalty parameters

The proposed learning model has two penalty parameters λ1
and λ2, and a smooth parameter r. In this section, we analyze
the sensitivities of these parameters in terms of the clustering
accuracy.

Parameters λ1 and λ2: We conduct experiments with dif-
ferent combinations of parameters λ1 and λ2 selected from a
set

{
10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104, 105

}
on the Handwritten digit with 50% missing instances of every
view and BBCSport dataset with 30% missing instance of
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every view. Experimental results of the proposed method
on the above two datasets are shown in Fig.8. From this
figure, we can find that the proposed method can obtain a
relative good clustering performance when λ2 ≤ 100λ1 on the
Handwritten digit dataset. Specially, on the BBCSport dataset,
the proposed method obtains the best performance when the
values of the two parameters satisfy λ2 = λ1 ≥ 0.1. The
experimental results demonstrate that it is easy to choose the
penalty parameters of the proposed method. In the experiments
of the previous section, we experimentally select the value of
parameter λ1 and λ2 from the set of

{
10−1, 1, 10, 102

}
.

Parameter r: Fig.9 shows the Acc (%) of the proposed
method versus smooth parameter r on the Handwritten dataset
with 50% missing instances of every view and BBCSport
dataset with 30% missing instances of every view. From Fig.9,
we can find that the proposed method is insensitive to the
values of parameter r on the Handwritten dataset to some
extent and can obtain a relative good performance on the
BBCSport dataset when parameter r is selected from the range
of [2, 9]. According to the experimental results in Fig.9, we
can simply select parameter r from [2, 9] for clustering.
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Fig. 8. Acc (%) versus parameters λ1 and λ2 of the proposed method on
the (a) Handwritten digit dataset with 50% missing instances of every view
and (b) BBCSport dataset with 30% missing instances of every view.
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Fig. 9. Acc (%) versus parameter r of the proposed method on the (a)
Handwritten digit dataset with 50% missing instances of every view and (b)
BBCSport dataset with 30% missing instances of every view.

E. Convergence analysis

Theoretical: From the optimization process presented in the
previous section, objective function (9) with 3l+1 variables is
divided into four convex sub-problems and each sub-problem
has the optimal solution. This indicates that the objective
function value is monotonously non-increasing for each sub-
problem. Thus, by optimizing all sub-problems, the objective
function value of problem (9) is also monotonously non-
increasing overall. In addition, we can find that the objective
function value of problem (9) has a lower bound 0. Therefore,
we can conclude that the objective function value of problem
(9) can converge after some iteration steps via the utilized
alternating iterative optimization approach [3].

Experimental: Fig.10 shows the objective function value
and clustering accuracy versus the iteration on the BBCsport
dataset with a missing-view rate of 30% and Handwritten
dataset with a missing-view rate of 50%. From Fig.10, we
can find the good convergence property of our provided
optimization approach, where the objective function value fast
decreases to the stationary point with the iteration increases.
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Fig. 10. The objective function value and clustering accuracy versus the
number of iterations of the proposed method on the (a) Handwritten dataset
with a missing-view rate of 50% and (b) BBCSport dataset with a missing-
view rate of 30%.

V. CONCLUSION

In this paper, a novel method, called AGC IMC is pro-
posed for the MVC scenarios with missing views. Different
from the existing methods, AGC IMC borrows the idea of
multi-view spectral clustering and jointly performs the graph
completion and consensus representation learning in a unified
framework. By dexterously fusing the within-view informa-
tion and between-view information, AGC IMC can infer the
intrinsic connective information of the missing instances and
the available instances, which is beneficial to obtain a more
reasonable consensus representation for clustering. Extensive
experimental results conducted on five multi-view datasets
with different missing rates of instances show that AGC IMC
outperforms the compared state-of-the-art IMC methods.
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